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Abstract—Singular value decomposition (SVD) is an effective
method for factoring matrices that is often a useful analysis tool.
Although it can be used for a variety of purposes, a common
application is data size reduction. The nature of SVD allows
any size dataset to go through a reduction in rank with little
loss of its innate variation. This ability and the insight that
this analysis lends make it a popular tool for data and signal
processing. Perhaps the best way to understand it, is to see how
it works. In this paper we will discuss about the Singular Value
Decomposition(SVD). We explain how to compute SVD for a
given m×n matrix and its applications in image processing with
examples.

I. INTRODUCTION

Lemma 1. [1] If Λ = S−1AS is a diagonal matrix then the
diagonal elements of Λ are eigenvalues, and the columns of S
are linearly independent eigenvectors of A.

Lemma 2. [1] If Λ is a diagonal matrix with diagonal entries
λ1, λ2 . . . λr then its eigenvalues are its diagonal entries
λ1, λ2 . . . λr.

Lemma 3. [1] For a matrix An×n, if λ is a scalar and v is
a nonzero vector such that Av = λv, then λ is a eigenvalue
of An×n and v is a corresponding eigenvector.

Definition 1. [1][2] The singular value decomposition of a
matrix Am×n is a factorization of Am×n as A = UΣV T in
which the matrices Um×r,Σr×r and Vn×r have the following
properties:

1. Um×r is a orthogonal matrix, UUT = UTU = I which
implies U−1 = UT.

2. Σr×r is a diagonal matrix whose diagonal entries
σ1, σ2 . . . σr are positive and σ1 ≥ σ2 ≥ · · · ≥ σr.

3. Vn×r is a orthogonal matrix, V V T = V TV = I which
implies V −1 = V T.

Given A = UΣV T, Multiplying by AT on both sides we get

ATA = (UΣV T)
T

(UΣV T)

= (V ΣTUT)(UΣV T)

= V ΣTΣV T [∵ UTU = I]

where the diagonal entries of the diagonal matrix ΣTΣ are
σ2
1 , σ

2
2 . . . σ

2
r .

ATA = V ΣTΣV T

= V ΣTΣV −1 [∵ V −1 = V T]

By Lemma 1, we can say that the diagonal entries of
diagonal matrix ΣTΣ are the eigenvalues of ATA which is a
symmetric matrix and the columns of V are the eigenvectors
of ATA. In a similar fashion, Multiplying A on both sides
by AT we get

AAT = (UΣV T)(UΣV T)
T

= (UΣV T)(V ΣTUT)

= UΣΣTUT

= UΣΣTU−1

By Lemma 1, we can say that the diagonal entries of
diagonal matrix ΣTΣ are the eigenvalues of AAT which is a
symmetric matrix and the columns of U are the eigenvectors
of AAT.

Let u1, u2 . . . ur and v1, v2 . . . vr be the eigenvectors of
AAT, ATA. We choose the eigenvectors to be orthonormal
(since the eigenvectors of symmetric matrices ATA,AAT are
orthogonal). By Lemma 3 we have:

(ATA)vi = σ2
i vi (1)

Multiplying by vTi on both sides

vTi A
TAvi = σ2

i v
T
i vi

vTi A
TAvi = σ2

i [∵ ‖vi‖2 = 1]

(Avi)
T(Avi) = σ2

i

‖Avi‖2 = σ2
i

∴ ‖Avi‖ = σi (2)

Similarly,
AATui = σ2

i ui (3)

Multiplying by A on both sides of (1)

(AAT)(Avi) = σ2
iAvi (4)

From (3), (4) we can say that the Avi is a eigenvector of
AAT which is same ui.

∴
Avi
σi

= ui (5)

Since ‖Avi‖ = σi and ui is a unit eigenvector.



II. COMPUTING THE SVD OF A m× n MATRIX

Let us compute the SVD of a matrix

A2×2 =

[
1 2
3 6

]
Computing the value of ATA,AAT

ATA =

[
1 3
2 6

] [
1 2
3 6

]
=

[
10 20
20 40

]

AAT =

[
1 2
3 6

] [
1 3
2 6

]
=

[
5 15
15 45

]
The charactersitic polynomial for ATA is given by

|ATA− λI| = 0

=⇒
∣∣∣∣10− λ 20

20 40− λ

∣∣∣∣ = 0

=⇒ (10− λ)(40− λ) = 0

=⇒ 400− 10λ− 40λ+ λ2 − 400 = 0

=⇒ λ2 − 50λ = 0

=⇒ λ(λ− 50) = 0

=⇒ λ = 0, λ = 50

To compute the eigenvector for the eigenvalue λ = 0 for
ATA, we need to solve (ATA− λI)x = 0[

10 20
20 40

] [
x
y

]
=

[
0
0

]
=⇒ 10x+ 20y = 0, 20x+ 40y = 0

=⇒ x+ 2y = 0

=⇒ x = −2y

Let y = t then x = −2t[
x
y

]
= t

[
−2
1

]
The eigenvector for the corresponding eigenvalue λ = 0 of

ATA is given by v1 =

[
−2
1

]
. The unit eigenvector

v1 =

[
−2√
5
1√
5

]
. Using (5) to find the value of u1

σ1u1 = Av1 =

[
1 2
3 6

] [−2√
5
1√
5

]
=

[
0
0

]
= 0

[
−3√
10
1√
10

]

The unit eigenvector u1 =

[
−3√
10
1√
10

]
[∵ σ2

1 = 0 =⇒ σ1 = 0].

To compute the eigenvector for the eigenvalue λ = 50 for
ATA, we need to solve (ATA− λI)x = 0

[
−40 20
20 −10

] [
x
y

]
=

[
0
0

]
=⇒ −40x+ 20y = 0, 20x− 10y = 0

=⇒ −2x+ y = 0

=⇒ 2x = y

Let x = t then y = 2t [
x
y

]
= t

[
1
2

]
The eigenvector for the corresponding eigenvalue λ = 50 for

ATA is given by v2 =

[
1
2

]
. The unit eigenvector

v1 =

[
1√
5
2√
5

]
. Using (5) to find the value of u2

u2 =
Av2
σ2

=
1

5
√

2

[
1 2
3 6

][ 1√
5
2√
5

]
=

1

5
√

2

[
5√
5

15√
5

]
=

[
1√
10
3√
10

]

The unit eigenvector

u2 =

[
1√
10
3√
10

]
[∵ σ2

2 = 50 =⇒ σ2 = 5
√

2]

We can also directly obtain the ui from AAT.The
characteristic polynomial for AAT is given by

|AAT − λI| = 0

=⇒
∣∣∣∣5− λ 15

15 45− λ

∣∣∣∣ = 0

=⇒ (5− λ)(45− λ)− 225 = 0

=⇒ 225− 5λ− 45λ+ λ2 − 225 = 0

=⇒ λ2 − 50 = 0

=⇒ λ(λ− 50) = 0

=⇒ λ = 0, λ = 50

To compute the eigenvector for the eigenvalue λ = 0 for
AAT, we need to solve (AAT − λI)x = 0[

5 15
15 45

] [
x
y

]
=

[
0
0

]
=⇒ 5x+ 15y = 0, 15x+ 45y = 0

=⇒ x+ 3y = 0

=⇒ x = −3y

Let y = t then x = −3t[
x
y

]
= t

[
−3
1

]
The eigenvector for the corresponding eigenvalue λ = 0 of

AAT is u1 =

[
−3
1

]
. The unit eigenvector u1 =

[
−3√
10
1√
10

]
To compute the eigenvector for the eigenvalue λ = 50 for
AAT, we need to solve (AAT − λI)x = 0



[
−45 15
15 −5

] [
x
y

]
=

[
0
0

]
=⇒ −45x+ 15y = 0, 15x− 5y = 0

=⇒ −3x+ y = 0

=⇒ 3x = y

Let x = t then y = 3t [
x
y

]
=

[
1
3

]
The eigenvector for the corresponding eigenvalue λ = 50 of

AAT is u2 =

[
1
3

]
. The unit eigenvector u2 =

[
1√
10
3√
10

]
We have

A =

[
1 2
3 6

]
, V =

[
−2√
5

1√
5

1√
5

2√
5

]

U =

[
−3√
10

1√
10

1√
10

3√
10

]
,Σ =

[
0 0
0 5

√
2

]
Verification of A = UΣV T

A = UΣV T =

[
−3√
10

1√
10

1√
10

3√
10

] [
0 0
0 5

√
2

] [−2√
5

1√
5

1√
5

2√
5

]T

=

[
0 5

√
2√

10

0 15
√
2√

10

][
−2√
5

1√
5

1√
5

2√
5

]

=

[
5
√
2√

50
10
√
2√

50
15
√
2√

50
30
√
2√

50

]

=

[
1 2
3 6

]
III. RANK-K APPROXIMATION FROM THE SVD

[5] The SVD of a matrix A can be used to approximate A
by a rank-k matrix where k ≥ 1. The rank-k approximation
of a matrix A can be computed as follows:

1. Compute the SVD of the Am×n = Um×rΣr×rV
T
r×n.

2. Keep the left k column vectors of Um×r so that Um×r
becomes Um×k.

3. Keep k row, column vectors of Σr×r so that Σr×r
becomes Σk×k.

4. Keep the top k row vectors of V T
r×n so that V T

r×n
becomes V T

k×n
5. Compute the rank-k approximation Ak =
Um×kΣk×kV

T
k×n where Ak is a m× n matrix.

The error in the approximation is given by the Frobenius norm
‖A−Ak‖F =

√∑m
i=1

∑n
j=1 aij

2

A. Example

Let A =

[
1 2
3 6

]
, the SVD of A = UΣV T where

V =

[
−2√
5

1√
5

1√
5

2√
5

]
U =

[
−3√
10

1√
10

1√
10

3√
10

]
,Σ =

[
0 0
0 5

√
2

]

The rank-1 approximation of A, A1 = U1Σ1V1
T where

U1 =

[
−3√
10
1√
10

]
Σ1 =

[
5
√

2
]
V1 =

[
−2√
5
1√
5

]

A1 =

[
−3√
10
1√
10

] [
5
√

2
] [−2√

5
1√
5

]T

=

[
−15
√
2√

10
5
√
2√

10

] [
−2√
5

1√
5

]
=

[
30
√
2

5
√
2

−15
√
2

5
√
2

−10
√
2

5
√
2

5
√
2

5
√
2

]

=

[
6 −3
−2 1

]

A−A1 =

[
1 2
3 6

]
−
[

6 −3
−2 1

]
=

[
−5 5
5 5

]
The Frobenius norm [8] ‖A−A1‖F is given by

‖A−A1‖F =
√

(−5)2 + 52 + 52 + 52 =
√

100 = 10

IV. APPLICATIONS OF SVD IN IMAGE PROCESSING

A. Image Overview

A color image consists of m× n pixels where each pixel
is made up of Red, Green and Blue channels. The image can
be represented as a m× n matrix for each of the Red, Green
and Blue channels. We use the Lenna test image [7] as the
example, shown below is the test image along with its Red,
Green and Blue channels

Fig. 1: Lenna test image 512× 512 pixels



Fig. 2: Red channel

Fig. 3: Green channel

Fig. 4: Blue channel

B. Image Compression

An image I requires m× n× 3 bytes for storage, the mo-
tivation behind image compression is to represent I using less
number of bytes. Since I can be represented as a m×n matrix
for each channel. We can compute the rank-k approximation
of each of the channels using the SVD and combine them to
get the image I

′
. The compression percentage of the image is

given by [3]

R =
(mk + nk + k) ∗ 100

mn

Fig. 5: rank-8 approximation, R = 3.128

Fig. 6: rank-16 approximation, R = 6.256

Fig. 7: rank-32 approximation, R = 12.512

V. CONCLUSION

In this paper we have discussed SVD, rank-k
approximation from the SVD and its application in image
processing i.e. image compression. There are other applications
of SVD like Image Denoising, Image Watermarking, Image
reconstruction. We would like to refer the reader to [3] [5]
[6] for theory and applications of the SVD.



Fig. 8: rank-64 approximation, R = 25.024

Fig. 9: rank-128 approximation, R = 50.048

Fig. 10: rank-256 approximation, R = 100.097

APPENDIX A
MATLAB CODE FOR RANK-k APPROXIMATION OF THE

IMAGE FROM THE SVD

1 A = imread ( ’ L e n n a t e s t . png ’ ) ;
2 A = im2double (A) ;
3 R = A ( : , : , 1 ) ;
4 G = A ( : , : , 2 ) ;
5 B = A ( : , : , 3 ) ;
6

7 z e r o c h a n n e l = z e r o s ( s i z e (A, 1 ) , s i z e (A, 2 ) ) ;
8

9 red img = c a t ( 3 , R , z e r o c h a n n e l , z e r o c h a n n e l ) ;
10 green img = c a t ( 3 , z e r o c h a n n e l , G, z e r o c h a n n e l ) ;

Fig. 11: rank-512 approximation, R = 200.195

11 blue img = c a t ( 3 , z e r o c h a n n e l , z e r o c h a n n e l , B) ;
12 i m w r i t e ( red img , ’ Lenna red . png ’ , ’ png ’ ) ;
13 i m w r i t e ( green img , ’ Lenna green . png ’ , ’ png ’ ) ;
14 i m w r i t e ( blue img , ’ Lenna b lue . png ’ , ’ png ’ ) ;
15 % Show t h e Red , Green , Blue c h a n n e l s o f t h e image
16 % imshow ( i m 2 u i n t 8 ( red img ) ) ;
17 % imshow ( i m 2 u i n t 8 ( green img ) ) ;
18 % imshow ( i m 2 u i n t 8 ( b lue img ) ) ;
19

20 [ u red , s red , v red ] = svd (R) ;
21 [ u green , s g reen , v g reen ] = svd (G) ;
22 [ u blue , s b lue , v b l ue ] = svd (B) ;
23

24

25 f o r k = [ 8 , 16 , 32 , 64 , 128 , 256 , 512]
26 % A = U S V’ where V’ i s t h e t r a n s p o s e o f V
27 % comput ing t h e low rank a p p r o x i m a t i o n o f each

component i . e R , G, B
28 Ak red = u red ( : , 1 : k ) * s r e d ( 1 : k , 1 : k ) * v red

( : , 1 : k ) ’ ;
29 Ak green = u green ( : , 1 : k ) * s g r e e n ( 1 : k , 1 : k ) *

v green ( : , 1 : k ) ’ ;
30 Ak blue = u b l ue ( : , 1 : k ) * s b l u e ( 1 : k , 1 : k ) *

v b l ue ( : , 1 : k ) ’ ;
31 img k = c a t ( 3 , Ak red , Ak green , Ak blue ) ;
32 i m w r i t e ( img k , s t r c a t ( ’ L e n n a t e s t ’ , num2s t r ( k ) ,

’ . png ’ ) , ’ png ’ ) ;
33 end
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